Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.937
Filtrar
1.
Am J Med Genet A ; : e63643, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656665

RESUMO

The mitochondrial phosphate carrier is critical for adenosine triphosphate synthesis by serving as the primary means for mitochondrial phosphate import across the inner membrane. Variants in the SLC25A3 gene coding mitochondrial phosphate carrier lead to failure in inorganic phosphate transport across mitochondria. The critical dependence on mitochondria as an energy source is especially evident in tissues with high-energy demands such as the heart, muscle; defects in the mitochondrial energy production machinery underlie a wide range of primary mitochondrial disorders that present with cardiac and muscle diseases. The characteristic clinical picture of a prominent early-onset hypertrophic cardiomyopathy and lactic acidosis may be an indication for analysis of the SLC25A3 gene. Here, described a patient with suspicion of infantile Pompe disease due to involvement of heart and muscle and high-level of plasma creatinine kinase but finally diagnosed mitochondrial phosphate-carrier deficiency.

2.
Clin Sci (Lond) ; 138(8): 491-514, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639724

RESUMO

The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão , Humanos , Creatina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Coração , Metabolismo Energético/fisiologia , Traumatismo por Reperfusão/metabolismo , Fosfocreatina/metabolismo , Doença Crônica , Miocárdio/patologia
4.
Arch Microbiol ; 206(5): 225, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642078

RESUMO

Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.


Assuntos
Cordyceps , Cordyceps/genética , Genes Fúngicos Tipo Acasalamento , Melhoramento Vegetal , Adenosina , Esporos Fúngicos/genética
5.
Water Res ; 255: 121517, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574613

RESUMO

Total adenosine triphosphate (tATP) was investigated for its potential as a rapid indicator of cyanobacterial growth and algaecide effectiveness. tATP and other common bloom monitoring parameters were measured over the growth cycles of cyanobacteria and green algae in laboratory cultures and examined at a drinking water source during an active bloom. Strong correlations (R2>0.78) were observed between tATP and chlorophyll-a in cyanobacteria cultures. tATP offered greater sensitivity by increasing two orders of magnitude approximately 7 d before changes in chlorophyll-a or optical density were observed in Lyngbya sp. and Dolichospermum sp. cultures. Increases in tATP per cell coincided with the onset of exponential growth phases in lab cultures and increase in cell abundance in field samples, suggesting that ATP/cell is a sensitive indicator that may be used to identify the development of blooms. Bench-scale trials using samples harvested during a bloom showed that tATP exhibited a clear dose-response during copper sulfate (CuSO4) and hydrogen peroxide (H2O2) treatment compared to chlorophyll-a and cell counts, indicating that cellular production and storage of ATP decreases even when live and dead cells cannot be distinguished. During Copper (Cu) algaecide application at a reservoir used as a drinking water source, tATP and cell counts decreased following initial algaecide application; however, the bloom rebounded within 10 d showing that the Cu algaecide only has limited effectiveness. In this case, tATP was a sensitive indicator to bloom rebounding after algaecide treatments and correlated positively with cell counts (R2=0.7). These results support the use of tATP as a valuable complementary bloom monitoring tool for drinking water utilities to implement during the monitoring and treatment of cyanobacterial blooms.

6.
Zhongguo Zhen Jiu ; 44(4): 395-399, 2024 Apr 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38621725

RESUMO

OBJECTIVES: To observe the effect of transcutaneous electrical acupoint stimulation (TEAS) on postoperative urinary function in elderly patients undergoing total hip arthroplasty (THA). METHODS: One hundred and eighty elderly patients undergoing unilateral THA without indwelling urinary catheters were randomly assigned to a TEAS group (90 cases, 3 cases dropped out, 4 cases were eliminated) and a sham TEAS group (90 cases, 1 case dropped out, 4 cases were eliminated). Both groups received fascia iliac block and subarachnoid block anesthesia under ultrasound guidance. The patients in the TEAS group were treated with TEAS at Zhongji (CV 3), Guanyuan (CV 4), and bilateral Huiyang (BL 35), Ciliao (BL 32) 30 minutes before anesthesia initiation, with dissperse-dense wave, frequency of 2 Hz/100 Hz, until 30 minutes after surgery. The patients in the sham TEAS group underwent the same procedure with the device applied at the same acupoints but without electrical stimulation. The incidence of postoperative urinary retention (POUR), time to first void, voiding threshold, urinary adenosine triphosphate (ATP) level, postoperative abnormal voiding status (bladder residual volume, re-catheterization rate, nocturia occurrence), and postoperative incidence of urinary tract infection (UTI) and prosthetic joint infection (PJI) were observed in both groups. RESULTS: The incidence of POUR in the TEAS group was lower than that in the sham TEAS group (P<0.05); the time to first void in the TEAS group was shorter than that in the sham TEAS group (P<0.05); the voiding threshold in the TEAS group was lower than that in the sham TEAS group (P<0.05); the urinary ATP level in the TEAS group was higher than that in the sham TEAS group (P<0.05); the bladder residual volume in the TEAS group was lower than that in the sham TEAS group (P<0.05); the nocturia occurrence in the TEAS group was lower than that in the sham TEAS group (P<0.05). However, there was no statistically significant difference in re-catheterization rate, incidence of UTI, and incidence of PJI between the two groups (P>0.05). CONCLUSIONS: TEAS could effectively reduce the occurrence of postoperative urinary retention and improve the postoperative urinary function in elderly patients undergoing THA, which might be related with increasing the urinary ATP level.


Assuntos
Artroplastia de Quadril , Noctúria , Estimulação Elétrica Nervosa Transcutânea , Retenção Urinária , Humanos , Idoso , Pontos de Acupuntura , Artroplastia de Quadril/efeitos adversos , Estimulação Elétrica Nervosa Transcutânea/métodos , Retenção Urinária/etiologia , Retenção Urinária/terapia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/terapia , Trifosfato de Adenosina
7.
Biotechnol Bioeng ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629468

RESUMO

l-glutathione (GSH) is an important tripeptide compound with extensive applications in medicine, food additives, and cosmetics industries. In this work, an innovative whole-cell catalytic strategy was developed to enhance GSH production by combining metabolic engineering of GSH biosynthetic pathways with an adenosine-based adenosine triphosphate (ATP) regeneration system in Escherichia coli. Concretely, to enhance GSH production in E. coli, several genes associated with GSH and  l-cysteine degradation, as well as the branched metabolic flow, were deleted. Additionally, the GSH bifunctional synthase (GshFSA) and GSH ATP-binding cassette exporter (CydDC) were overexpressed. Moreover, an adenosine-based ATP regeneration system was first introduced into E. coli to enhance GSH biosynthesis without exogenous ATP additions. Through the optimization of whole-cell catalytic conditions, the engineered strain GSH17-FDC achieved an impressive GSH titer of 24.19 g/L only after 2 h reaction, with a nearly 100% (98.39%) conversion rate from the added  l-Cys. This work not only unveils a new platform for GSH production but also provides valuable insights for the production of other high-value metabolites that rely on ATP consumption.

8.
Vasc Med ; : 1358863X241235669, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568107

RESUMO

BACKGROUND: Arterial calcification due to deficiency of CD73 (ACDC; OMIM 211800) is a rare genetic disease resulting in calcium deposits in arteries and small joints causing claudication, resting pain, severe joint pain, and deformities. Currently, there are no standard treatments for ACDC. Our previous work identified etidronate as a potential targeted ACDC treatment, using in vitro and in vivo disease models with patient-derived cells. In this study, we test the safety and effectiveness of etidronate in attenuating the progression of lower-extremity arterial calcification and vascular blood flow based on the computed tomography (CT) calcium score and ankle-brachial index (ABI). METHODS: Seven adult patients with a confirmed genetic diagnosis of ACDC were enrolled in an open-label, nonrandomized, single-arm pilot study for etidronate treatment. They took etidronate daily for 14 days every 3 months and were examined at the NIH Clinical Center bi-annually for 3 years. They received a baseline evaluation as well as yearly follow up after treatment. Study visits included imaging studies, exercise tolerance tests with ABIs, clinical blood and urine testing, and full dental exams. RESULTS: Etidronate treatment appeared to have slowed the progression of further vascular calcification in lower extremities as measured by CT but did not have an effect in reversing vascular and/or periarticular joint calcifications in our small ACDC cohort. CONCLUSIONS: Etidronate was found to be safe and well tolerated by our patients and, despite the small sample size, appeared to show an effect in slowing the progression of calcification in our ACDC patient cohort.(ClinicalTrials.gov Identifier NCT01585402).

9.
Front Microbiol ; 15: 1355225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572243

RESUMO

Background: Alcoholic liver disease (ALD) is exacerbated by disruptions in intestinal microecology and immune imbalances within the gut-liver axis. The present study assesses the therapeutic potential of combining Akkermansia muciniphila (A. muciniphila) with inosine in alleviating alcohol-induced liver injury. Methods: Male C57BL/6 mice, subjected to a Lieber-DeCarli diet with 5% alcohol for 4 weeks, served as the alcoholic liver injury model. Various analyzes, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), ELISA, immunochemistry, 16S rRNA gene sequencing, and flow cytometry, were employed to evaluate liver injury parameters, intestinal barrier function, microbiota composition, and immune responses. Results: Compared to the model group, the A. muciniphila and inosine groups exhibited significantly decreased alanine aminotransferase, aspartate aminotransferase, and lipopolysaccharide (LPS) levels, reduced hepatic fat deposition and neutrophil infiltration, alleviated oxidative stress and inflammation, and increased expression of intestinal tight junction proteins (Claudin-1, Occludin, and ZO-1). These effects were further pronounced in the A. muciniphila and inosine combination group compared to individual treatments. While alcohol feeding induced intestinal dysbiosis and gut barrier disruption, the combined treatment reduced the abundance of harmful bacteria (Oscillibacter, Escherichia/Shigella, and Alistipes) induced by alcohol consumption, promoting the growth of butyrate-producing bacteria (Akkermansia, Lactobacillus, and Clostridium IV). Flow cytometry revealed that alcohol consumption reduced T regulatory (Treg) populations while increasing those of T-helper (Th) 1 and Th17, which were restored by A. muciniphila combined with inosine treatment. Moreover, A. muciniphila and inosine combination increased the expression levels of intestinal CD39, CD73, and adenosine A2A receptor (A2AR) along with enhanced proportions of CD4+CD39+Treg and CD4+CD73+Treg cells in the liver and spleen. The A2AR antagonist KW6002, blocked the beneficial effects of the A. muciniphila and inosine combination on liver injury in ALD mice. Conclusion: This study reveals that the combination of A. muciniphila and inosine holds promise for ameliorating ALD by enhancing the gut ecosystem, improving intestinal barrier function, upregulating A2AR, CD73, and CD39 expression, modulating Treg cells functionality, and regulating the imbalance of Treg/Th17/Th1 cells, and these beneficial effects are partly A2AR-dependent.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38575456

RESUMO

Substantial progress has been made toward understanding biology and developing new therapies for pancreatic ductal adenocarcinoma (PDAC). In this review, new insights from genomic profiling, as well as implications for treatment and prognosis, are discussed. New standards of care approaches with a focus on drug therapies are discussed for the treatment of resectable and advanced PDAC. The role of targeted and immune therapies remains limited; cohorts likely to benefit from these approaches are discussed. Promising, preliminary results regarding experimental therapies are reviewed.

11.
Int J Eat Disord ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650547

RESUMO

OBJECTIVE: Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD: Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS: The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION: The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE: Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.

12.
Future Oncol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652041

RESUMO

CD39 is the rate-limiting enzyme for the molecular signal cascade leading to the generation of ADP and adenosine monophosphate (AMP). In conjunction with CD73, CD39 converts adenosine triphosphate (ATP) to ADP and AMP, which leads to the accumulation of immunosuppressive adenosine in the tumor microenvironment. This review focuses on the role of CD39 and CD73 in immune response and malignant progression, including the expression of CD39 within the tumor microenvironment and its relationship to immune effector cells, and its role in antigen presentation. The role of CD39- and CD73-targeting therapeutics and cancer-directed clinical trials investigating CD39 modulation are also explored.

13.
Food Chem ; 450: 139343, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38631212

RESUMO

Ultrasound-assisted freezing (UAF) is a clean technique for meat cryoprotections; however, its effectiveness is still limited compared to conventional cryoprotectants, e.g., sugars, polyols, especially at high dosages. To resolve this problem, a synergistic cryoprotection strategy was developed in this study. Adenosine monophosphate (AMP), an adenosine-type food additive, was introduced into frozen surimi at a considerably reduced content (0.08%), yet substantially enhanced the efficiency of UAF to comparable levels of commercial cryoprotectant (4% sucrose with 4% sorbitol). Specifically, UAF/AMP treatment retarded denaturation of surimi myofibrillar protein (MP) during 60-day frozen storage, as evidenced by its increased solubility, Ca2+-ATPase activity, sulfhydryl content, declined surface hydrophobicity, particle size, and stabilized protein conformation. Gels of UAF/AMP-treated surimi also demonstrated more stabilized microstructures, uniform water distributions, enhanced mechanical properties and water-holding capacities. This study provided a feasible approach to boost the cryoprotective performance of UAF, thus expanding its potential applications in frozen food industry.

14.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612476

RESUMO

The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Criança , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hipercapnia , Dióxido de Carbono , Hipóxia
15.
Front Pharmacol ; 15: 1370506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633617

RESUMO

Adenylyl cyclases (ACs) are crucial effector enzymes that transduce divergent signals from upstream receptor pathways and are responsible for catalyzing the conversion of ATP to cAMP. The ten AC isoforms are categorized into four main groups; the class III or calcium-inhibited family of ACs comprises AC5 and AC6. These enzymes are very closely related in structure and have a paucity of selective activators or inhibitors, making it difficult to distinguish them experimentally. AC5 and AC6 are highly expressed in the heart and vasculature, as well as the spinal cord and brain; AC6 is also abundant in the lungs, kidney, and liver. However, while AC5 and AC6 have similar expression patterns with some redundant functions, they have distinct physiological roles due to differing regulation and cAMP signaling compartmentation. AC5 is critical in cardiac and vascular function; AC6 is a key effector of vasodilatory pathways in vascular myocytes and is enriched in fetal/neonatal tissues. Expression of both AC5 and AC6 decreases in heart failure; however, AC5 disruption is cardio-protective, while overexpression of AC6 rescues cardiac function in cardiac injury. This is a comprehensive review of the complex regulation of AC5 and AC6 in the cardiovascular system, highlighting overexpression and knockout studies as well as transgenic models illuminating each enzyme and focusing on post-translational modifications that regulate their cellular localization and biological functions. We also describe pharmacological challenges in the design of isoform-selective activators or inhibitors for AC5 and AC6, which may be relevant to developing new therapeutic approaches for several cardiovascular diseases.

16.
Nutr Rev ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598538

RESUMO

Purines are chemical compounds integral to health and are crucial for the synthesis of nucleic acids. They are part of DNA and RNA and participate in various metabolic and signaling processes. They also function as neurotransmitters and serve as co-substrates for activating many metabolites. Inosine, a purine nucleoside, is a breakdown product of adenosine with similar properties and a much longer half-life (15 h vs ∼5 s) than adenosine. The purpose of this narrative review is to discuss the metabolic effects of inosine and highlight its beneficial properties and implication in complex diseases such as obesity, type 2 diabetes, cancers, cardiovascular diseases, and neurodegenerative diseases. A search was performed for purine- and inosine-related articles on the University of North Carolina (UNC) Health Sciences Library, PubMed, and Google Scholar sites. Inosine is involved in the regulation of RNA editing, metabolic enzyme activity, and signaling pathways. Animal and cell culture studies have shown inosine to be anti-inflammatory, immunomodulatory, and neuroprotective, and serving as a critical regulator of immune checkpoint inhibition therapeutic response in various tumor types. Recent studies have also implicated inosine in increasing energy expenditure, browning of adipose tissue, and improving leptin sensitivity. Human studies, however, have been limited to urate-elevating properties of inosine. These findings make inosine relevant to many complex diseases, and need to be translated to humans. Future studies should be conducted to investigate the mechanisms underlying the role of inosine in adiposity, inflammation, oxidative stress, and neuronal function.

17.
Indian J Tuberc ; 71(2): 170-178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589121

RESUMO

BACKGROUND: Since, Vitamin D [1α,25(OH)2D)] enhances antimicrobial activity of Innate immunity and modulate Adaptive immune responses, simultaneously, so it play a potential role for balanced immune activity against Mycobacterium tuberculosis and restricting tissue injuries within the TB patients.(Chun et al., 2011) 9 We aimed to determine the role of adjunct Vitamin D treatment on the outcome of pulmonary tuberculosis patients and evaluated the effect of Vitamin D administration on Differential Leucocyte Count, Erythrocyte Sedimentation Rate, serum Adenosine deaminase, serum C- reactive protein, Oxygen saturation (SpO2) and Body Weight in Vitamin D deficient pulmonary tuberculosis patients. METHODS: We conducted a prospective, interventional, randomized, double blind, parallel group, active controlled clinical trial. Newly diagnosed Vitamin D deficient pulmonary tuberculosis patients were randomly assigned to intervention group (received standard anti-tubercular treatment with adjunct Vitamin D3) and control group (received standard anti-tubercular treatment without adjunct Vitamin D3). Total four doses [each dose of 2.5 mg (100000 IU)] of Vitamin D3 were given, orally. First dose was given within 7 days of starting anti-tubercular treatment and second, third, fourth dose were given at 2, 4 and 6 weeks respectively. At the time of enrollment, we measured all baseline characteristics. During follow-up, we measured the study variables and monitored adverse events at 2, 4, 6, 8 and 12 weeks. Our safety parameter was serum corrected calcium level to assess the risk of hypercalcemia. RESULTS: Total 130 pulmonary TB patients, 65 patients in each group, were analyzed. Our study results showed that decrease in Neutrophil count was statistically significant with small effect sizes at every time point of measurement and increase in Lymphocyte count was statistically significant with small and moderate effect sizes at 4, 6 and 8 week for intervention group than for control group. Decrease in erythrocyte sedimentation rate was statistically significant with small effect sizes at 6 and 8 week, decrease in serum adenosine deaminase and serum C- reactive protein was statistically significant with moderate effect sizes at 4, 6 and 8 week for intervention group than for control group. Increase in Oxygen saturation was statistically significant at 4 week with small effect size and increase in body weight was statistically significant with small effect sizes for intervention group than for control group. No case of hypercalcemia was reported. CONCLUSION: Our findings suggest a potential role of adjunctive Vitamin D3 to accelerate resolution of inflammatory responses and improvement in clinical outcomes of pulmonary TB patients. TRIAL REGISTRATION: This trial is registered with Clinical Trials Registry - INDIA (http://ctri.nic.in) with CTRI Number - CTRI/2021/11/037914. PLACE OF STUDY: Room Number 27, first floor out-patients department (OPD) and inpatient Wards, fourth floor, Department of Respiratory Medicine, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), INDIA.


Assuntos
Hipercalcemia , Tuberculose Pulmonar , Humanos , Vitamina D/uso terapêutico , Adenosina Desaminase , Estudos Prospectivos , Vitaminas/uso terapêutico , Colecalciferol/uso terapêutico , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/tratamento farmacológico , Método Duplo-Cego , Peso Corporal
18.
Indian J Tuberc ; 71(2): 185-194, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589123

RESUMO

Tuberculous pericarditis (TBP) is a relatively uncommon but potentially fatal extrapulmonary manifestation of tuberculosis. Despite its severity, there is no universally accepted gold standard diagnostic test for TBP currently. The objective of this study is to compare the diagnostic accuracy of the most commonly used tests in terms of specificity, sensitivity, negative predictive value (NPV), and positive predictive value (PPV), and provide a summary of their diagnostic accuracies. A comprehensive literature review was performed using Scopus, MEDLINE, and Cochrane central register of controlled trials, encompassing studies published from start to April 2022. Studies that compared Interferon Gamma Release Assay (IGRA), Xpert MTB/RIF, Adenosine Deaminase levels (ADA), and Smear Microscopy (SM) were included in the analysis. Bayesian random-effects model was used for statistical analysis and mean and standard deviation (SD) with 95% confidence intervals were calculated using the absolute risk (AR) and odds ratio (OR). Rank probability and heterogeneity were determined using risk difference and Cochran Q test, respectively. Sensitivity and specificity were evaluated using true negative, true positive, false positive, and false negative rates. Area under the receiver operating characteristic (AUROC) was calculated for mean and standard error. A total of seven studies comprising 16 arms and 618 patients were included in the analysis. IGRA exhibited the highest mean (SD) sensitivity of 0.934 (0.049), with a high rank probability of 87.5% for being the best diagnostic test, and the AUROC was found to be 94.8 (0.36). On the other hand, SM demonstrated the highest mean (SD) specificity of 0.999 (0.011), with a rank probability of 99.5%, but a leave-one-out analysis excluding SM studies revealed that Xpert MTB/RIF ranked highest for specificity, with a mean (SD) of 0.962 (0.064). The diagnostic tests compared in our study exhibited similar high NPV, while ADA was found to have the lowest PPV among the evaluated methods. Further research, including comparative studies, should be conducted using a standardized cutoff value for both ADA levels and IGRA to mitigate the risk of threshold effect and minimize bias and heterogeneity in data analysis.


Assuntos
Mycobacterium tuberculosis , Pericardite Tuberculosa , Tuberculose , Humanos , Pericardite Tuberculosa/diagnóstico , Metanálise em Rede , Teorema de Bayes , Tuberculose/diagnóstico , Sensibilidade e Especificidade
19.
Eur J Med Chem ; 271: 116380, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38615410

RESUMO

Imaging of the A1 adenosine receptor (A1R) by positron emission tomography (PET) with 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propyl-xanthine ([18F]CPFPX) has been widely used in preclinical and clinical studies. However, this radioligand suffers from rapid peripheral metabolism and subsequent accumulation of radiometabolites in the vascular compartment. In the present work, we prepared four derivatives of CPFPX by replacement of the cyclopentyl group with norbornane moieties. These derivatives were evaluated by competition binding studies, microsomal stability assays and LC-MS analysis of microsomal metabolites. In addition, the 18F-labeled isotopologue of 8-(1-norbornyl)-3-(3-fluoropropyl)-1-propylxanthine (1-NBX) as the most promising candidate was prepared by radiofluorination of the corresponding tosylate precursor and the resulting radioligand ([18F]1-NBX) was evaluated by permeability assays with Caco-2 cells and in vitro autoradiography in rat brain slices. Our results demonstrate that 1-NBX exhibits significantly improved A1R affinity and selectivity when compared to CPFPX and that it does not give rise to lipophilic metabolites expected to cross the blood-brain-barrier in microsomal assays. Furthermore, [18F]1-NBX showed a high passive permeability (Pc = 6.9 ± 2.9 × 10-5 cm/s) and in vitro autoradiography with this radioligand resulted in a distribution pattern matching A1R expression in the brain. Moreover, a low degree of non-specific binding (5%) was observed. Taken together, these findings identify [18F]1-NBX as a promising candidate for further preclinical evaluation as potential PET tracer for A1R imaging.

20.
Chembiochem ; : e202400165, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616163

RESUMO

Studying the metabolic role of non-essential promiscuous enzymes is a challenging task, as genetic manipulations usually do not reveal at which point(s) of the metabolic network the enzymatic activity of such protein is beneficial for the organism. Each of the HAD-like phosphatases YcsE, YitU and YwtE of Bacillus subtilis catalyzes the dephosphorylation of 5-amino-6-ribitylamino-uracil 5'-phosphate, which is essential in the biosynthesis of riboflavin. Using CRISPR technology, we have found that the deletion of these genes, individually or in all possible combinations failed to cause riboflavin auxotrophy and did not result in significant growth changes. Analysis of flavin and adenylate content in B. subtilis knockout mutants showed that (i) there must be one or several still unidentified phosphatases that can replace the deleted proteins; (ii) such replacements, however, cannot fully restore the intracellular content of any of three flavins studied (riboflavin, FMN, FAD); (iii) whereas bacterial fitness was not significantly compromised by mutations, the intracellular balance of flavins and adenylates did show some significant changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...